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Accurate nonadiabatic  lower and upper  bounds for groundstate energies of 
H~- and D~- are calculated with the linearized method of variance minimization. 
The results in a.u. are 

-0.597139063 < Eo(H~-) < -0.597138994 

-0.598788775 < Eo(Df)  < -0.598778738 

i.e. the values are determined with an absolute error smaller than 0.02 cm -1 
for H~- and 0.01 cm -1 for D2. 
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1. Introduction 

The determination of accurate lower bounds for eigenvalues of  Schr6dinger 
operators is still a hard problem even for the simplest possible molecules, i.e. 
H f  and D~-. We wish to show how the principle of variance minimization in 
connection with Temple 's  formula can be applied to this problem. Let H be a 
selfadjoint operator with a discrete spectrum trd = {Ell Eo < E1 < " " "}  below the 
bot tom of the continuum and domain Du.  From Temple 's  formula 

IIHulI2-(HuIu) 2 
E~ o - ( n u l u )  ' Ilull=l (1) 

with Eo </9 < E1 it can be seen [1] that a crucial point for the determination of 
a good lower bound is the minimization of the variance 

FEu] = IIHull =- (Hu [u) = 
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As has been shown [2], [3] this aim can be achieved by applying the method of 
variance minimization. 

2. The Hami l ton ian  and the basic functions 

After separation of translational and rotational coordinates the Schr6dinger 
operator for a homonuclear diatomic one-electron molecule in elliptical coordi- 
nates is [4] 

H = Ho+ H' 

1 1 1 
H ~ = - � 8 9  e .] 

ra rn R 

1 
H ' =  - A R --~--~- A e 

with 

02 + 2  0 2 2 1 ( R O) 1 ~2+r/2-1 
A R = - ~  -ROR R 2 g 2r  1+ ~-~ -~RE r r (2) 

4 1 
A~ = R2 ~ 2 _ ~  Y 

1 1 4 1 
- - + - -  = ~2 __ 2 
r A r n  R *1 

0 0 X = r162 1) ~-~+ r/(1 - ~7 2) 

y = O  _ _  2 t~ 2 0 

O,[  ( '  -1)0-~] +0-~[ (1-~  ) ~--~]" 

For our calculation we choose the following basis set 

vi = e - ~ ' * l ~ '  e-�89 -- d)) (3) 

with the real parameters a, c, d, exponents Ai, ~,~ and t~ being the order of the 
Hermite polynomial Ht,. These basis functions differ from those, ~bi, used by 
Bishop [4] by omitting the factors cosh bT/and R -3/2. 

The first factor was omitted to make the integrals occurring in Ilnv, II more 
convenient. However, the omission of the factor R -3/2 is absolutely necessary 
because H~b~ r Dn. Indeed the corresponding integral 

fo ~ 2 exp - d)E)I-I,,(cR - (-�89 d)) dR 

is divergent. 
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Applying the operator H, Eq. (2), on the basis functions v~, i.e. Hvi, yields a sum 
of n = 3 8  terms differing at least in one of the exponents (hl, vi) or in 
the order ti of  the Hermite polynomial. Thus calculating (Hvi I Hvj) we obtain 
�89 1) =741 terms. 

In order to handle this enormous number  of  terms a computer procedure was 
developed to calculate the product (HvilHvj) directly from basic integrals. Each 
of the 38 terms in Hv~ and Hvj is determined one-to-one by a triplet ()tp, l,p, tp) 
and (;to, Vq, tq) respectively. Therefore each of  the terms in (HvilHvj) is deter- 
mined one-to-one by the four numbers (hp+hq,  Vp+ Vq, tp, tq). The integrals 
corresponding to these terms may be separated in a (f, ~) -par t  characterized by 
(Ap+;tq, Vp+l,q) and an R-part  characterized by (tr, tq). These integrals are 
calculated and stored in advance. Concerning details of  the procedure see [5]. 

3. Calculation of the eigenvalues 

The determination of lower and upper  bounds for the ground state of  H~- and 
D~ respectively was done with the linearized method of variance minimization 
[3]. In order to apply Temple 's  formula (1) a good lower bound p for the first 
excited vibronic state is needed as well. Usually the lower bound of the first 
excited state obtained during the calculation for the groundstate is of  sufficient 
accuracy. However,  in this case the small difference between the energy levels 
demands an extra calculation of the lower bound of the first excited vibronic 
state. This was done by choosing suitable starting values close to El,  E2, E 3 
respectively. In these cases the linearized method of variance minimization yields 
directly a lower bound for E3 by A * - ~ 3 "  [6] and thus more accurate lower 
bounds for E2 and E1 are obtained by successive application of Temple 's  formula. 
The best result was p = 0.58722812 a.u. Another crucial point is the optimization 
of the basis set. We systematically enlarged the basis set by raising the integers 
hl, vl, ti in (3) with hl = 0, 1, 2, 3, 4; ~,~ = 0, 2, 4, 6 and ti = 0, 1 , . . . ,  8. We decided 
to use Bishop's parameters [4] a --- 1.6, c = 3.0, d = 2.1 and later optimized these 
values for our basis using a set of 45 functions. We observed only a slight change 
in c with Copt = 3.8. In order to avoid an unnecessary large basis we chose Bishop's 
method of selecting basis functions [5], finally obtaining a set of  300 functions. 
The results for H~- are shown in Table 1 with 

E o -  E0* = Xo* Fo* 
p-*o* 

and dim Vn the number  of  basis functions. 

Table 1. Lower bounds Eo* for the groundstate E o of H~- in a.u. 

dim V, A~ ax v~ ax t ma~ Fo* Ao* Eo* 

45 2 4 4 2.4933 • 10 -5 -0.596662350 -0.599305172 
84 3 4 6 2.3568 X 10 - 6  -0.597133585 -0.597371515 

140 4 6 6 2.9846 • 10 -7  -0.597136370 -0.597166493 
300 7 8 14 6.8912 • 10 -1~ -0.597138994 -0.597139063 
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An analogue was obtained for D~-: 

-0.598788775 a.u. -< Eo(D~-) - -0.598788738 a.u. 

As has been shown [7] accurate upper bounds are obtained simultaneously during 
the first step of  the iteration. The upper and lower bounds noted in the abstract 
are taken from the calculations with dim V, = 300. 

Discussion 

According to Herzberg and Jungen [8] the experimental dissociation energy of 
H~ is 21 379.8 + 0.4 cm -1. 

With our results and the theoretical dissociation limit [4] of  H~- at 109 677.57 cm -1 
we get 

21 379.30 cm -~ < Edits < 21 379.28 cm -~ 

which is in good agreement with the experimental result. 

Taking account of the relativistic and radiative corrections of 0.11 cm -1 [4], [9], 
[10] our theoretical value is within the limits of  the experimental accuracy. 

Appendix 
In addition to the well known integrals from the calculation of  (H~,[~) a new type of  a singular 
integral occurs in IIH~'II, i.e. 

f;I ~ I = ~2 _ r/2 dr/d~. 
1 

with 

_ _ _  e set/ 
I =  e-'~r " d~:+f f ~ dn dse = I2 + Io~ 

1 r r/2 aT] J2 J -1  ~ - - r /  

we obtain 

/2 = e-~'e . . . .  'ln~+~ de-2 ~ e-'*r176 

where the last summat ion  Y.' runs over odd i's and 

 I;f /co = ~ e-~eseu-2-2kr/v+2k dr/ds  e 
0 1 

oo 2 
I f  e-~e~-2-2k d~ =~o v+2k-  1 

The retaining integrals over a single variable where solved numerically with the procedure CADRE 
[ 11 ]. All integrals where calculated to an accuracy o f  20 digits. 
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